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Abstract: We explore here the issue of duality versus spectrum equivalence in dual theo-

ries generated through the master action approach. Specifically we examine a generalized

self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge

embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS)

theory with higher derivatives. We show here that the latter contains a ghost mode con-

trary to the original GSD model. By figuring out the origin of the ghost we are able to

suggest a new master action which interpolates between the local GSD model and a nonlo-

cal MCS model. Those models share the same spectrum and are ghost free. Furthermore,

there is a dual map between both theories at classical level which survives quantum cor-

relation functions up to contact terms. The remarks made here may be relevant for other

applications of the master action approach.
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1. Introduction

The bosonization program in two dimensions is a good example of the power of dual

descriptions of the same theory [1, 2], see also [3] and references therein. Although much less

progress has been done in this area in higher dimensions, some nonperturbative features like

confinement can also be revealed with the help of duality as in [4]. Here we are interested

in the intermediate case of 2 + 1 dimensions. By means of a master action it was shown

in [5] that the gauge invariant sector of the Maxwell Chern-Simons (MCS) theory is on

shell equivalent to the self-dual (SD) theory of [6] with the dual map fµ ↔ εµνα∂νAα

m . This

type of duality is intimately related to the bosonization program in d = 2 + 1 [7 – 12].

The master action of [5] has been generalized to include matter fields in [13 – 15]. Al-

though very useful specially at quantum level in order to provide equivalence of correlation

functions, the master action is not derived from first principles and it is justified a posteri-

ori. A systematic derivation of dual gauge theories would certainly be welcome. In [14] a

Noether gauge embedding procedure was suggested and latter, see [16 – 18], it was applied

on a variety of examples and dimensions. However, it has been pointed out in [19] that this

procedure may lead to ghosts in the dual gauge theory which has been explicitly verified in

a dual model to a four dimensional Lorentz violating electrodynamics [20]. Here we show

that this is also the case of a gauge theory, suggested in [18], which is dual to a generalized

self-dual model. An understanding of this issue from the point of view of master actions

is the aim of this work. In the particular case analyzed in [18] we propose an alternative

master action to avoid the presence of ghosts but our interpretation is rather general and

can be used to suggest master actions in other cases. In order to be able to make a non-

perturbative analysis of the spectrum we choose quadratic theories. We pick up the case

of vector theories in d = 2 + 1 since the issue of generating masses without breaking gauge

invariance is very important in particle physics and that seems to be behind the difficulties

in generating local dual vector theories with more than one massive mode in d = 2 + 1

. In particular, we start in the next section from a rather general quadratic non-gauge

theory for a vector field in d = 2 + 1 with two massive modes and calculate the residues of
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the propagator around those poles in order to verify the presence of ghosts. In the same

section we apply the so called Noether embedding procedure to generate the corresponding

dual gauge theory. In section 3 we show how the use of master actions may lead to dual

theories with different spectra and we learn how to modify it in order to avoid a spectrum

mismatch in the dual gauge theory. In the last section we draw some conclusions.

2. The GSD model and its higher derivative dual

Allowing arbitrary functions of the D’Alambertian ai = ai(¤), the lagrangian below in-

cludes a rather general set of Poincaré covariant quadratic theories for an abelian vector

field in d = 2 + 1, see also [21, 18],

LGSD = a0f
µfµ + a1εαβγfα∂βfγ +

a2

2
Fµν(f)Fµν(f) (2.1)

We use gµν = (+,−,−) and assume in this work that ai are constants but later on we

will make a comment on the general case. Minimizing LGSD we can write its equations of

motion in a self-dual form where f̃ defined below stands for the dual field:

fµ =
a1

a0
Eµνf ν +

a2

a0
¤ θµνf

ν ≡ f̃µ (2.2)

We have introduced Eµν = εµνγ∂γ and ¤ θµν = gµν − ∂µ∂ν . From (2.2) we get ∂µfµ = 0.

Since EµνEνγ = −¤ θγ
µ and both a0 and a1 are presumably non-vanishing, it is easy to

derive from (2.2):

[

(a0 − a2¤)2 + a2
1¤

]

fµ = a2
2

(

¤ + m2
+

) (

¤ + m2
−

)

fµ = 0 (2.3)

with

2m2
± = b2 − 2a ±

√

(b2 − 2a)2 − 4a2 (2.4)

and a = a0/a2 , b = a1/a2. The masses are real for a < 0 or b2 > 4a if a > 0. An interesting

observation is that we can not have (a0 − a2¤) fµ = 0, since from (2.3) we see that this

would lead to ¤fµ = 0 and this two equations together would contradict our hypothesis

a0 6= 0. We can read off the propagator for the generalized self-dual field from (2.1). In

the momentum space we have:

〈fα(k)fβ(−k)〉GSD =
gαβ − θαβ

a0
+

(

a0 + k2a2

)

(a0 + k2a2)
2 − a2

1k
2
θαβ +

i a1Eαβ

(a0 + k2a2)
2 − a2

1k
2

(2.5)

As expected from (2.3) there are two simple poles at k2 = m2
± which become a dou-

ble pole only at the special point a2
1 = 4a0a2. In order to make sure that we are free

of ghosts we have to show in general, see e.g. [20 – 22], that the imaginary part of the

residue of the propagator at each pole is positive when saturated with conserved currents,

that is Im
(

Res(Jα

〈

fα(k)fβ(−k)
〉

J∗
β)

)

> 0 with kµJµ = 0 = kµJ∗
µ. In d = 2 + 1 the

propagator of a vector field in a Poincarè covariant theory will have the general Lorentz
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structure A(k2)(gµν − θµν) + B(k2)θµν + C(k2)Eµν . In practice1, this is equivalent to re-

quire limk2→m2(k2 − m2)B(k2) < 0. Applying this requirement at k2 = m2
+ and k2 = m2

−

respectively we have:

a + m2
+

a2(m
2
+ − m2

−)
=

b2 +
√

b2(b2 − 4a)

2a2(m
2
+ − m2

−)
< 0 (2.6)

a + m2
−

a2(m2
− − m2

+)
= −b2 −

√

b2(b2 − 4a)

2a2(m2
+ − m2

−)
< 0 (2.7)

Since m2
+ > m2

− we are free of ghosts if a0 > 0 and a2 < 0, in agreement with [21]. Those

are in fact usual conditions on the mass term of the self-dual model and on the coefficient

of the Maxwell term in QED in d = 2+1 respectively. Notice that we get rid automatically

of the double pole under such circumstances.

In [18] the gauge theory dual to LGSD was derived via a Noether gauge embedding

procedure which in summary works as follows. Since the equations of motion for the

the self-dual field come from Kµ = 2 (a0f
µ − a1E

µνfν − a2¤ θµνfν) = 0, and under a

local U(1) transformation δφfµ = ∂µφ we have δφKµ = 2a0δ
φfµ. Thus, if we define

LHD−MCS = LGSD − KαKα/4a0 it follows that δφLHD−MCS = 0 and we have a gauge

invariant theory. By minimizing this theory δLHD−MCS = Kµδfµ − KµδKµ/2a0 = 0 it is

clear that the equations of motion Kµ = 0 of LGSD lead to δLHD−MCS = 0 and therefore

are embedded in the equations of motion of the new gauge theory. We stress that such

embedding does not guarantee equivalence of the equations of motion of both theories,

not even in the gauge invariant sector of LHD−MCS. Applying this embedding explicitly,

renaming the field fµ → Aµ, one has the higher derivative theory [18]:

LHD−MCS = LGSD − KαKα

4a0

= Aµa1

(

1 − 2a2¤

a0

)

εµνγ∂γAν − 1

2
Fµν(A)

(

a2
1

a0
− a2

2¤

a0
+ a2

)

Fµν(A) (2.8)

The equations of motion of the higher derivative model (2.8) can be written as

a1

(

1 − 2a2¤

a0

)

εµνγ∂γAν + ¤

(

a2
1

a0
− a2

2¤

a0
+ a2

)

θµνA
ν = a0

(

Ãµ − ˜̃Aµ

)

= 0 , (2.9)

which makes evident, see (2.2), the duality at classical level with the GSD model upon

replacing fµ by Ãµ. From (2.9) we deduce the analogous of formula (2.3):

(

a2
1 + a2

2 ¤
) (

¤ + m2
+

) (

¤ + m2
−

)

εµνγ∂γAν = 0 (2.10)

The expression (2.10) shows that we have new classical solutions in the gauge invariant

sector
(

a2
1 + a2

2 ¤
)

εµνγ∂γAν = 0 which were not present in the GSD model. The new

1By choosing a convenient frame for a massive pole k = (k, 0, 0), which implies Jµ = (0, J1, J2), and using

the general formula for a propagator in d = 2 + 1 one can show that Im
`

Res(Jα

˙

fα(k)fβ(−k)
¸

J∗

β )
´

=

−SJJ̄ = −S(J1 + iJ2)(J
∗

1 − iJ∗

2 ) where for every massive single pole S = limk2
→m2(k2

− m2)B(k2).
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solutions will correspond to a new pole in the propagator. After introducing a gauge fixing

term with parameter λ we have the propagator:

〈Aα(k)Aβ(−k)〉HD−MCS =
gαβ − θαβ

λk2
+ B(k2)θαβ +

ia0a1(a0 + 2a2k
2)Eαβ

k2(a2
1 − k2a2

2)
[

(a0 + k2a2)
2 − a2

1k
2
]

(2.11)

where, in agreement with the general predictions of [19], we have

B(k2) =

(

a0 + k2a2

)

(a0 + k2a2)
2 − a2

1k
2
− a2

a2
2k

2 − a2
1

(2.12)

Since the first term in B(k2) is the same one appearing in (2.5) it is clear that k2 = m2
±

are still physical poles as in the GSD model for a0 > 0 and a2 < 0. However, since

limk2→(a1/a2)2
[

k2 − (a1/a2)
2
]

B(k2) = −1/a2 should be negative the new pole will be a

ghost if we insist in a2 < 0. On the other hand, if we drop that condition one of the poles

k2 = m2
± will become a ghost mode. From (2.12) we see that the only possible exit might

be a fine tuning of a0, a1, a2 such that one of the poles m2
± coincides with (a1/a2)

2 and the

corresponding residue has the right sign. This is only possible for a2
1 = −(a0a2)/2. In this

case m2
− = (a1/a2)

2 but B(k2) = −a0/
[

a2
2(k

2 − m2
−)(k2 − m2

+)
]

which implies that one

of the poles m2
± must be a ghost again. In conclusion, the dual gauge model LHD−MCS

obtained by the Noether embedding procedure will always contain a ghost in the spectrum

as far as a2 6= 0. We only recover a ghost free theory in the well known case of the SD/MCS

duality [5] where a2 = 0.

3. New master action for a2 6= 0

We could not have predicted from the start that the embedding procedure would lead us

to ghosts. It turns out that is much simpler to understand the appearance of ghosts from

the master action approach. In [18] a master action which relates LGSD and LHD−MCS

was suggested:

LMaster = a0f
µfµ + a1εαβγfα∂βfγ +

a2

2
Fµν(f)Fµν(f)

−a1εαβγ(Aα − fα)∂β(Aγ − fγ) − a2

2
Fµν(A − f)Fµν(A − f) (3.1)

After the translation Aµ → Aµ + fµ in (3.1), which has a trivial jacobian in the path

integral, we have two decoupled theories:

LMaster → LGSD(f) + a1A
µεµνγ∂γAν − a2

2
Fµν(A)Fµν(A) (3.2)

If, in the path integral we further integrate over the gauge field Aµ we end up with a

partition function whose lagrangian density is simply LGSD(f). On the other hand, we

could have decoupled the fields through the translation fµ → fµ + Ãµ which gives:

LMaster → LHD−MCS(A) + a0f
µfµ (3.3)
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By gaussian integrating over fµ we derive the partition function for LHD−MCS(A) which

proves the correctness of (3.1). Now we can understand the appearance of ghosts as follows.

Since the spectrum of (3.2) and (3.3) must be the same and fµ in (3.3) is certainly a non-

propagating field, the poles of LGSD(f) and of the MCS theory for Aµ in (3.2) must be

contained altogether in LHD−MCS(A). Indeed, the extra pole we found in (2.11) is precisely

associated with the two last terms in (3.2) including the non-propagating massless pole.

The above translations also explain why a master action gives rise to two theories, in this

case LGSD(f) and LHD−MCS(A), with different spectra.

After the above discussions it becomes clear how to modify the master action given

in (3.1) to avoid a spectrum mismatch. The key point is to use a topological (non-

propagating) Chern-Simons term to mix the gauge and non-gauge fields:

Lnew
Master = a0f

µfµ+a1εαβγfα∂βfγ+
a2

2
Fµν(f)Fµν(f)−a1εαβγ(Aα−fα)∂β(Aγ−fγ) (3.4)

Performing a translation Aµ → Aµ + fµ we have a pure Chern-Simons term plus the GSD

model given in (2.1):

Lnew
Master → LGSD − a1εαβγAα∂βAγ (3.5)

while a convenient translation in the fµ field would lead to

Lnew
Master → LNL−MCS + fµ (a0gµν − a2¤θµν) f ν (3.6)

where the new lagrangian is a kind of nonlocal MCS theory:

LNL−MCS = −a1εµναAµ∂νAα − Fµν(A)
a2

1

2(a0 − a2¤)
Fµν(A) (3.7)

Notice that for a2 = 0 we recover the duality between the SD and MCS models. In

order to check that the spectrum of LNL−MCS and LGSD are the same we write down the

propagator coming from (3.7) after adding a gauge fixing term with parameter λ:

〈Aα(k)Aβ(−k)〉NL−MCS =
gαβ − θαβ

λk2
+

(

a0 + k2a2

)

(a0 + k2a2)
2 − a2

1k
2
θαβ+

i
(

a0 + k2a2

)2
Eαβ

a1k2
[

(a0 + k2a2)
2 − a2

1k
2
]

(3.8)

Comparing with the propagator coming from the GSD model (2.5) , except for the non-

physical (gauge dependent) massless pole k2 = 0 which stems from the Chern-Simons term

in (3.5) the theories LGSD and LNL−MCS share precisely the same spectrum consisting of

two massive physical particles in general. Concerning the Chern-Simons pole k2 = 0, the

reader can easily check by choosing a frame kµ = (k, k, 0) and saturating with conserved

currents that we have εµναJµJ∗
ν kα = 0 and therefore , as noticed in [19], this massless pole

has a vanishing residue and does not propagate. Thus, the conclusion is that we better

mix the gauge and non-gauge fields in the master action through a non-propagating term

as the topological Chern-Simons term in the specific case of d = 2 + 1.

Once we have checked the particle content we now verify the dual map at classical

level. The new master action furnishes the equations of motion:

d(A − f) = 0 (3.9)

fµ = f̃µ (3.10)

– 5 –
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The duality transformation is defined as in section 2. The equation (3.10) is the same

of the GSD model. From (3.9) and (3.10) we have Aµ + ∂µφ = Ãµ which leads to

a2
2

(

¤ + m2
+

) (

¤ + m2
−

)

Ãµ = 0. Since the dual of a total divergence vanishes we have

Ãµ = ˜̃Aµ which guarantees the classical duality between LNL−MCS and LGSD using the

map fµ ↔ Ãµ. On the other hand, from (3.1) we have:

f̃µ = Ãµ (3.11)

fµ = f̃µ (3.12)

They also lead to Ãµ = ˜̃Aµ. If a2 = 0, Lnew
Master and LMaster are equivalent as (3.9)

and (3.11).

In the following we confirm that the dual equivalence persists at quantum level up to

contact terms. If we define the generating function:

Z(J) =

∫

DADf e
i

R

d3x

»

LNew
Master(f,A)+

λ(∂µAµ)2

2
+JαÃα

–

(3.13)

After Aµ → Aµ + fµ and integrating over Aµ we obtain, up to an overall constant,

Z(J) =

∫

Df ei
R

d3x[LGSD(f)+JαDαβJβ+Jαf̃α] (3.14)

with

Dαβ =
−1

4a1a
2
0

[

[(a2
2 ¤ − a2

1)Eαβ − 2a1a2 ¤ θαβ

]

(3.15)

On the other side, if we integrate over fµ in (3.13) we have LNL−HD−MCS+
λ(∂µAµ)2

2 +JαÃα.

Therefore, deriving with respect to Jα we deduce:

〈

f̃α(x)f̃β(y)
〉

GSD
=

〈

Ãα(x)Ãβ(y)
〉

NL−MCS
− Dαβδ(3)(x − y) (3.16)

Furthermore, if we define the generating function

ZGSD(J, j) =

∫

Df ei
R

d3x(LGSD(f)+Jαf̃α+jαfα) (3.17)

and make fµ → fµ + Jµ/2a0 we have

ZGSD(J, j)=

∫

Df exp

{

i

∫

d3x

[

LGSD(f) + (jα + Jα)fα − Jνjν

2a0
− JµHµβJβ + JνJν

4a0

]}

(3.18)

where Hαβ is the operator on the right handed side of (2.2), i.e., f̃α ≡ Hαβfβ. From (3.17)

and (3.18), see also [24, 18], we have

〈

fα(x)f̃β(y)
〉

GSD
= 〈fα(x)fβ(y)〉GSD +

gαβ

2a0
δ(3)(x − y) (3.19)

〈

f̃α(x)f̃β(y)
〉

GSD
= 〈fα(x)fβ(y)〉GSD +

(gαβ + Hαβ)

2a0
δ(3)(x − y) (3.20)
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Since the GSD model is quadratic the relations (3.19) and (3.20) assure that the classical

self-duality fµ = f̃µ holds also at quantum level up to contact terms. Combining (3.16)

and (3.20) we derive:

〈fα(x)fβ(y)〉GSD =
〈

Ãα(x)Ãβ(y)
〉

NL−MCS
−

(

Dαβ − (gαβ + Hαβ

2a0

)

δ(3)(x − y) (3.21)

We conclude that LNL−MCS(A) is dual to LGSD(f) at classical and quantum level (up to

contact terms) with the map fµ ↔ Ãµ. From this point of view LNL−MCS(A) is on the

same footing of LHD−MCS(A) but it has the advantage of having the same spectrum of

the GSD model and being ghost free.

We end up this section with three remarks. First, it is tempting to formally redefine

the gauge field Aµ → (a0 − a2¤)1/2 Aµ in order to make LNL−MCS(A) a local gauge theory.

However, the higher derivative theory thus obtained, although classically equivalent to the

GSD model and simpler than LHD−MCS, contains two poles k2 = m2
± and one of them

is necessarily a ghost now. This is not totally surprising, the situation is similar to the

massless Schwinger model in 1 + 1 dimensions where the integration over the fermionic

massless fields gives rise to the effective (exact) gauge invariant action:

L = −1

4
F 2

µν − e2

4π
Fµν 1

¤
Fµν (3.22)

The photon propagator from the above lagrangian contains only one massive pole at k2 =

e2/π and no ghosts. However, if we try a naive redefinition Aµ →
√
±¤Aµ the action

becomes local but the propagator will get a factor ±
[

k2(k2 − e2/π)
]−1

. Whatever sign we

choose we always have a ghost field either at k2 = 0 or k2 = e2/π. In fact in this specific

case we can achieve a consistent local formulation by introducing a scalar field through

Aµ = (εµν∂ν/
√

¤)φ. However, a consistent formulation in terms of a vector gauge field can

only be non-local to the best we know.

The second remark concerns the uniqueness of the new master action. Clearly, the

important point in our proposal is that the gauge and the non-gauge fields are mixed

though a non-propagating term, in this case of d = 2 + 1 we have used the Chern-Simons

term. One might try to generalize the new master action by using an arbitrary constant

in front of the mixed Chern-Simons term in (3.4) instead of a1. We have done that and

checked that all important conclusions about dual equivalence, spectrum match, absence of

ghosts, etc, hold for arbitrary values of this parameter but the simplest dual gauge theory

is obtained precisely for the theory suggested here.

At last, we remark that the duality between LNL−MCS(A) and the GSD model ob-

tained by the new master action is also valid for the case where a0 = a0(¤) , a2 = a2(¤)

are not constants. If the coefficient of the Chern-Simons mixing term a1 is kept constant

we expect once again a spectrum equivalence otherwise the match of the spectrum between

the non-gauge and the gauge theory will no longer be true in general.

4. Conclusion

Recently, the Noether gauge embedding and the master action procedures were applied in
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different theories and different dimensions. In particular, one has been trying to generalize

them to nonabelian theories [25] and models defined on the non-commutative plane [26].

This embedding procedure usually reproduces the result of a master action which is very

convenient at quantum level. Here we have shown how we can modify this master action

to avoid extra poles in the propagator and assure that both dual theories have the same

spectrum. Though, we have used a generalized self-dual model as an example, it is clear

that similar ideas can be useful whenever we make use of interpolating master actions.

The key point is to choose a non-propagating term to mix the gauge and non-gauge fields.

The price we have paid for a ghost free dual gauge theory was locality. However, it is well

know that it is not easy to have massive vector fields and still keep local gauge invariance,

sometimes we have to break locality as in the massless Schwinger model. Since the GSD

model contains two massive vector modes, one might speculate that the usual topological

mechanism [27] to generate mass for a gauge field in d = 2 + 1, with the help of higher

derivatives, could not cope with two massive poles without generating unwanted extra

poles. More work is necessary to clarify this point.
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